2,082 research outputs found

    Intravital Imaging in a Zebrafish Model Elucidates Interactions Between Mucosal Immunity and Pathogenic Fungi

    Get PDF
    Candida yeasts are common commensals that can cause mucosal disease and life-threatening systemic infections. While many of the components required for defense against Candida albicans infection are well established, questions remain about how various host cells at mucosal sites assess threats and coordinate defenses to prevent normally commensal organisms from becoming pathogenic. Using two Candida species, C. albicans and C. parapsilosis, which differ in their abilities to damage epithelial tissues, we used traditional methods (pathogen CFU, host survival, and host cytokine expression) combined with high-resolution intravital imaging of transparent zebrafish larvae to illuminate host-pathogen interactions at the cellular level in the complex environment of a mucosal infection. In zebrafish, C. albicans grows as both yeast and epithelium-damaging filaments, activates the NF-kB pathway, evokes proinflammatory cytokines, and causes the recruitment of phagocytic immune cells. On the other hand, C. parapsilosis remains in yeast morphology and elicits the recruitment of phagocytes without inducing inflammation. High-resolution mapping of phagocyte-Candida interactions at the infection site revealed that neutrophils and macrophages attack both Candida species, regardless of the cytokine environment. Time-lapse monitoring of single-cell gene expression in transgenic reporter zebrafish revealed a partitioning of the immune response during C. albicans infection: the transcription factor NF-kB is activated largely in cells of the swimbladder epithelium, while the proinflammatory cytokine tumor necrosis factor alpha (TNF-a) is expressed in motile cells, mainly macrophages. Our results point to different host strategies for combatting pathogenic Candida species and separate signaling roles for host cell types

    Finite-size effects on the Hamiltonian dynamics of the XY-model

    Full text link
    The dynamical properties of the finite-size magnetization M in the critical region T<T_{KTB} of the planar rotor model on a L x L square lattice are analyzed by means of microcanonical simulations . The behavior of the q=0 structure factor at high frequencies is consistent with field-theoretical results, but new additional features occur at lower frequencies. The motion of M determines a region of spectral lines and the presence of a central peak, which we attribute to phase diffusion. Near T_{KTB} the diffusion constant scales with system size as D ~ L^{-1.6(3)}.Comment: To be published in Europhysics Letter

    B cells are capable of independently eliciting rapid reactivation of encephalitogenic CD4 T cells in a murine model of multiple sclerosis

    Get PDF
    <div><p>Recent success with B cell depletion therapies has revitalized efforts to understand the pathogenic role of B cells in Multiple Sclerosis (MS). Using the adoptive transfer system of experimental autoimmune encephalomyelitis (EAE), a murine model of MS, we have previously shown that mice in which B cells are the only MHCII-expressing antigen presenting cell (APC) are susceptible to EAE. However, a reproducible delay in the day of onset of disease driven by exclusive B cell antigen presentation suggests that B cells require optimal conditions to function as APCs in EAE. In this study, we utilize an <i>in vivo</i> genetic system to conditionally and temporally regulate expression of MHCII to test the hypothesis that B cell APCs mediate attenuated and delayed neuroinflammatory T cell responses during EAE. Remarkably, induction of MHCII on B cells following the transfer of encephalitogenic CD4 T cells induced a rapid and robust form of EAE, while no change in the time to disease onset occurred for recipient mice in which MHCII is induced on a normal complement of APC subsets. Changes in CD4 T cell activation over time did not account for more rapid onset of EAE symptoms in this new B cell-mediated EAE model. Our system represents a novel model to study how the timing of pathogenic cognate interactions between lymphocytes facilitates the development of autoimmune attacks within the CNS.</p></div

    Towards Scalable Visual Exploration of Very Large RDF Graphs

    Full text link
    In this paper, we outline our work on developing a disk-based infrastructure for efficient visualization and graph exploration operations over very large graphs. The proposed platform, called graphVizdb, is based on a novel technique for indexing and storing the graph. Particularly, the graph layout is indexed with a spatial data structure, i.e., an R-tree, and stored in a database. In runtime, user operations are translated into efficient spatial operations (i.e., window queries) in the backend.Comment: 12th Extended Semantic Web Conference (ESWC 2015

    Universal Fluctuations in Correlated Systems

    Full text link
    The probability density function (PDF) of a global measure in a large class of highly correlated systems has been suggested to be of the same functional form. Here, we identify the analytical form of the PDF of one such measure, the order parameter in the low temperature phase of the 2D-XY model. We demonstrate that this function describes the fluctuations of global quantities in other correlated, equilibrium and non-equilibrium systems. These include a coupled rotor model, Ising and percolation models, models of forest fires, sand-piles, avalanches and granular media in a self organized critical state. We discuss the relationship with both Gaussian and extremal statistics.Comment: 4 pages, 2 figure

    Visual analytics of contact tracing policy simulations during an emergency response

    Get PDF
    Epidemiologists use individual-based models to (a) simulate disease spread over dynamic contact networks and (b) to investigate strategies to control the outbreak. These model simulations generate complex ‘infection maps’ of time-varying transmission trees and patterns of spread. Conventional statistical analysis of outputs offers only limited interpretation. This paper presents a novel visual analytics approach for the inspection of infection maps along with their associated metadata, developed collaboratively over 16 months in an evolving emergency response situation. We introduce the concept of representative trees that summarize the many components of a time-varying infection map while preserving the epidemiological characteristics of each individual transmission tree. We also present interactive visualization techniques for the quick assessment of different control policies. Through a series of case studies and a qualitative evaluation by epidemiologists, we demonstrate how our visualizations can help improve the development of epidemiological models and help interpret complex transmission patterns

    Constraints on Low-Mass WIMP Interactions on 19F from PICASSO

    Get PDF
    Recent results from the PICASSO dark matter search experiment at SNOLAB are reported. These results were obtained using a subset of 10 detectors with a total target mass of 0.72 kg of 19F and an exposure of 114 kgd. The low backgrounds in PICASSO allow recoil energy thresholds as low as 1.7 keV to be obtained which results in an increased sensitivity to interactions from Weakly Interacting Massive Particles (WIMPs) with masses below 10 GeV/c^2. No dark matter signal was found. Best exclusion limits in the spin dependent sector were obtained for WIMP masses of 20 GeV/c^2 with a cross section on protons of sigma_p^SD = 0.032 pb (90% C.L.). In the spin independent sector close to the low mass region of 7 GeV/c2 favoured by CoGeNT and DAMA/LIBRA, cross sections larger than sigma_p^SI = 1.41x10^-4 pb (90% C.L.) are excluded.Comment: 23 pages, 7 figures, to be published in Phys. Lett.

    Relevance of soft modes for order parameter fluctuations in the Two-Dimensional XY model

    Full text link
    We analyse the spin wave approximation for the 2D-XY model, directly in reciprocal space. In this limit the model is diagonal and the normal modes are statistically independent. Despite this simplicity non-trivial critical properties are observed and exploited. We confirm that the observed asymmetry for the probability density function for order parameter fluctuations comes from the divergence of the mode amplitudes across the Brillouin zone. We show that the asymmetry is a many body effect despite the importance played by the zone centre. The precise form of the function is dependent on the details of the Gibbs measure, giving weight to the idea that an effective Gibbs measure should exist in non-equilibrium systems, if a similar distribution is observed.Comment: 12 pages, 9 figure

    Faculty Perceptions of Using Synchronous Video-Based Communication Technology

    Get PDF
    Online learning has traditionally relied on asynchronous text-based communication. The COVID-19 pandemic, though, has provided many faculty members with new and/or additional experience using synchronous video-based communication. Questions remain, though, about how this experience will shape online teaching and learning in the future. We conducted a mixed method study to investigate faculty perceptions of using synchronous video-based communication technology. In this paper, we present the results of our inquiry and implications for future research and practice
    corecore